

The history of cables

With long experience since 1912 Prysmian Cables and Systems Oy is today one of the leading cable manufacturers in the world.

Today

The Prysmian Group has more than 50 production plants in several countries on all continents. In addition to this the company has a worldwide network of sales and representative offices.

Prysmian Cables and Systems Oy, located in Pikkala, Finland, produces energy cables – from extra high (400 kV) to low voltage, for land, submarine and overhead applications – along with a wide range of accessories. All our products can be tailored to meet the customer's requirements.

Our company has been the forerunner in high voltage cable technology for several decades. We have experience in supplying all types of high voltage cable systems throughout the world with full turn key capability.

Environmental and reliability aspects

When planning a new supply route, consideration of the environment is becoming more and more important due to regulation and public opinion.

The XLPE cables are environmentally friendly and safe.

The cable system is invisible. The required right of way is very small and normally after the installation the land can be used again for its original purpose. This can result in considerable savings.

Reducing the electrical and magnetic fields is also becoming more important. The cable system can be designed according to different magnetic field requirements, and the external electrical fields are zero.

Cable systems offer better safety to both workers and general public, with fewer dangerous situations due to accidental contacts or flashovers.

Reliability of the network is an important factor because the loss of supply has high cost consequences. Cable systems are less vulnerable for failures compared to overhead lines.

Prysmian sets High Standards

Partial discharges in the cable's insulation are regarded as one of the main reasons for electrical breakdown. Most recognized national and international standards permit discharges of 5 pC. However, our policy is not to allow deliveries of cables with any detectable discharges. Our new test set-up allows testing of up to 400 kV cables at a measuring sensitivity which is considerably better than the above requirement.

We are certified according to ISO 9001 Quality and ISO 14001 Environmental Management System standards for our activities.

Cross-linked polyethylene insulation manufactured using conventional process.

Cross-linked polyethylene insulation manufactured using the CDCC process.

Completely Dry Curing and Cooling

With Prysmian's Completely Dry Curing and Cooling method (developed under the name of Nokia Cables) the insulation is kept absolutely dry during the whole manufacturing process. This prevents the electrochemical treeing during the whole lifetime of the cable. Our high voltage cables are equipped with a metallic moisture barrier protecting the insulation from subsoil humidity.

With the CDCC method, Prysmian has strengthened its position as one of the world's most prominent cable manufacturers and as a forerunner in the field of XLPE cables since 1975.

The conductor screen, insulation and insulation screen are extruded at the same time, i.e. triple extruded.

Curing takes place in a vulcanizing tube pressurized by nitrogen gas. Besides fully dry curing, cooling in dry conditions is another important feature. It is achieved by using nitrogen gas.

On-line relaxation

First in the world, since 1994, our production line has been equipped with the unique on-line relaxation system, giving benefits as:

- increased impulse voltage withstand
- reduced internal mechanical stresses
- minimized shrinkback behaviour

The on-line relaxation unit consists of an additional heating zone located in the middle of the cooling section of the vulcanizing line. Insulation surface is heated up and cooled down again. This treatment reduces significantly both internal mechanical stresses and shrinkback of XLPE insulation.

Integrated optical fiber unit

Optical fibers in power cables can be used for measuring the actual temperature along the cable line or for data transmission. Fiber units are normally embedded under the lead sheath or between the screen wires.

Temperature monitoring provides continuous monitoring of cable temperatures, detecting hot spots, delivering operational status, condition assessment and power circuit rating data. It is immune to electromagnetic interference and provides reliable temperature measurements, ideal for use in high voltage cables.

Cables with optical fibers are denoted with letter 'F', for example HXCHBMK-2F.

Standard Specifications

We manufacture High Voltage Cables according to any international or national standard. The two most common standard constructions are described on page 6–7.

Two samples from the same cable and the same test run. The only difference between these samples is the use of relaxation.

НХСНВМК / АНХСНВМК

Single core XLPE insulated power cable with copper wire screen and foil laminate sheath

Conductor

Longitudinally watertight segmental stranded and compacted copper or aluminium

- 2 Binder tapes Semiconducting waterblocking tapes and binder tapes
- 6 Conductor screen Extruded semiconducting copolymer compound
- Insulation Extruded superclean XLPE compound
- Insulation screen Extruded semiconducting copolymer compound
- 6 Bedding Semiconducting waterblocking tapes
- Metallic screen A layer of copper wire helix and a copper contact tape counter helix
- Separation tape Semiconducting waterblocking tapes and binder tapes
- 9 Radial water barrier Aluminium or copper foil laminate
- Outer sheath Extruded PE or HFFR

HXLMK / AHXLMK

Single core XLPE insulated power cable with lead sheath

Conductor Longitudinally watertight segmental stranded and compacted copper or aluminium

- 2 Binder tapes Semiconducting waterblocking tapes and binder tapes
- Conductor screen Extruded semiconducting copolymer compound
- Insulation
 Extruded superclean XLPE compound
- Insulation screen Extruded semiconducting copolymer compound
- **6** Bedding Semiconducting waterblocking tapes
- 7 Metallic sheath Extruded lead, alloy E
- 8 Outer sheath Extruded PE, PVC or HFFR

Sample Constructions

Rated voltages $U_o/U = 38/66 \text{ kV}$ $U_m = 72.5 \text{ kV}$ $U_p = 325 \text{ kV}$ Rated temperatures • Maximum permissible temp. of conductor in continuous use 90°C • Maximum permissible temp. of conductor in short-circuit 250°C

(for durations up to 5 sec.) Standard IEC 60840

72 kV Cables 36/66 kV Single core, XLPE-insulated high voltage power cables

Nominal cross-sectional area of conductor		mm ²	300	500	800	1200	1600
Constructional data							
Outer diameter	With aluminium conductor	mm	60	67	74	83	90
	With copper conductor	mm	60	67	74	85	93
Net weight	With aluminium conductor	kg/km	6800	8400	11000	14000	16500
with Pb sheath	With copper conductor	kg/km	8750	12000	16000	22000	27500
Recommended minimum bending radius during laying		m	1.1	1.2	1.3	1.5	1.7

Electrical properties at 66 kV and 50 Hz

	Maximum DC-resi	stance		at 20°C	Ω/km	0.1000	0.0605	0.0367	0.0247	0.0186
	Effoctivo	Flat	Conductor	20°C	Ω/km	0.120	0.084	0.065	0.059	0.056
Aluminium	rosistanco	formation	temperature	65°C	Ω/km	0.136	0.092	0.068	0.059	0.055
conductor	scroops			90°C	Ω/km	0.145	0.097	0.070	0.060	0.055
	bondod at	Trefoil	Conductor	20°C	Ω/km	0.106	0.068	0.047	0.037	0.033
	both onds	formation	temperature	65°C	Ω/km	0.123	0.078	0.052	0.040	0.035
	both enus			90°C	Ω/km	0.133	0.084	0.055	0.042	0.036
	Maximum DC-resi	stance		at 20°C	Ω/km	0.0601	0.0366	0.0221	0.0151	0.0113
Effective-	Effoctivo	Flat	Conductor	20°C	Ω/km	0.080	0.061	0.051	0.047	0.047
	rosistanco	formation	temperature	65°C	Ω/km	0.089	0.064	0.052	0.046	0.045
conductor	scroops			90°C	Ω/km	0.093	0.066	0.052	0.045	0.044
	bondod at	Trefoil	Conductor	20°C	Ω/km	0.067	0.045	0.033	0.024	0.022
	both onds	formation	temperature	65°C	Ω/km	0.076	0.050	0.036	0.025	0.022
	both ends			90°C	Ω/km	0.082	0.054	0.038	0.026	0.023
DC-resistance o	f metallic screen at	20°C approx.			Ω/km	0.74	0.62	0.51	0.40	0.35
		Flat formation			mH/km	0.59	0.56	0.53	0.51	0.50
Inductance		Trefoil formation			mH/km	0.40	0.37	0.34	0.33	0.32
Operating capac	itance				μF/km	0.20	0.25	0.30	0.35	0.40
Charging current	t				A/km	2.3	2.7	3.5	4.3	4.8

Continuous current-carrying capacities

Conductor	Cables laid	Conductor temperature	Laying formation	Screen circuit						
			Flat	Open	А	435	575	750	910	1040
		65°C		Closed	А	415	525	640	710	750
	In		Trefoil	Open	А	415	545	700	830	930
	ground			Closed	А	410	535	680	790	870
	of 15°C		Flat	Open	А	515	680	890	1080	1235
Aluminium		90°C		Closed	Α	490	625	770	860	920
			Trefoil	Open	А	490	645	830	990	1110
				Closed	А	485	635	805	945	1045
			Flat	Open	А	685	930	1265	1555	1815
	In air	90°C		Closed	А	660	865	1105	1270	1390
	of 25°C		Trefoil	Open	А	605	820	1095	1335	1535
				Closed	А	600	810	1085	1320	1515
			Flat	Open	А	560	730	940	1200	1390
		65°C		Closed	А	520	635	740	820	855
	In .		Trefoil	Open	А	535	685	860	1095	1240
	ground			Closed	Α	525	670	820	1005	1105
	of 15°C		Flat	Open	А	660	865	1115	1415	1645
Copper		90°C		Closed	А	620	765	900	1005	1055
			Trefoil	Open	Α	630	815	1025	1305	1485
				Closed	А	620	795	980	1205	1335
			Flat	Open	А	880	1185	1585	2040	2420
	In air	90°C		Closed	А	830	1065	1305	1505	1620
	of 25°C		Trefoil	Open	А	775	1035	1355	1765	2065
				Closed	А	770	1025	1340	1685	1940

Aluminium conductor	kA	28.3	47.2	75.6	113.4	151.2
Copper conductor	kA	42.8	71.4	114.2	171.4	228.5

Sample Constructions

Rated voltages $U_o/U = 64/110 \text{ kV}$ $U_m = 123 \text{ kV}$ $U_p = 550 \text{ kV}$ Rated temperatures • Maximum permissible temp. of conductor in continuous use 90°C • Maximum permissible temp. of conductor in short-circuit 250°C (for durations up to 5 sec.)

123 kV Cables 64/110 kV Single core, XLPE-insulated high voltage power cables

Standard IEC 60840							
Nominal cross-sectional area of	conductor	mm ²	300	500	800	1200	1600
Constructional data							
Outer diameter	With aluminium conductor	mm	67	74	82	92	99
	With copper conductor	mm	67	74	83	94	102
Net weight	With aluminium conductor	kg/km	8100	10100	13000	16500	19000
with Pb sheath	With copper conductor	kg/km	10050	13500	18500	24500	30000
Recommended minimum bending radius during laying		m	1.2	1.3	1.5	1.7	1.8

Electrical properties at 110 kV and 50 Hz

	Maximum DC-resi	stance		at 20°C	Ω/km	0.1000	0.0605	0.0367	0.0247	0.0186
	Effoctivo	Flat	Conductor	20°C	Ω/km	0.123	0.088	0.070	0.064	0.061
A	rosistanco	formation	temperature	65°C	Ω/km	0.139	0.096	0.072	0.064	0.060
Aluminium	scroops			90°C	Ω/km	0.148	0.101	0.074	0.064	0.060
conductor	bonded at	Trefoil	Conductor	20°C	Ω/km	0.107	0.069	0.048	0.038	0.034
	both ends	formation	temperature	65°C	Ω/km	0.125	0.079	0.053	0.041	0.036
	both enus			90°C	Ω/km	0.134	0.085	0.056	0.043	0.037
	Maximum DC-resi	stance		at 20°C	Ω/km	0.0601	0.0366	0.0221	0.0151	0.0113
	Effective-	Flat	Conductor	20°C	Ω/km	0.084	0.065	0.056	0.052	0.052
Connor resista	resistance	formation	temperature	65°C	Ω/km	0.092	0.068	0.056	0.050	0.049
copper	scroons			90°C	Ω/km	0.096	0.070	0.057	0.050	0.048
conductor	bonded at	Trefoil	Conductor	20°C	Ω/km	0.068	0.046	0.034	0.025	0.023
	both ends	formation	temperature	65°C	Ω/km	0.077	0.051	0.037	0.027	0.024
	both ends			90°C	Ω/km	0.083	0.054	0.038	0.028	0.024
DC-resistance o	f metallic screen at	: 20°C approx.			Ω/km	0.62	0.51	0.42	0.34	0.30
		Flat formation			mH/km	0.61	0.58	0.55	0.53	0.52
Inductance		Trefoil formation			mH/km	0.42	0.39	0.36	0.35	0.33
Operating capac	itance				μF/km	0.15	0.20	0.25	0.30	0.30
Charging curren	t				A/km	3.3	3.8	4.6	5.6	6.2

Continuous current-carrying capacities

Conductor	Cables laid	Conductor temperature	Laying formation	Screen circuit						
			Flat	Open	А	435	575	750	905	1035
		65°C		Closed	А	410	515	625	690	730
	In .		Trefoil	Open	А	415	545	700	830	930
	ground			Closed	А	410	530	675	785	860
	of 15°C		Flat	Open	А	510	675	885	1075	1230
Aluminium		90°C		Closed	А	490	615	750	840	895
			Trefoil	Open	А	490	640	830	990	1110
				Closed	А	485	630	800	940	1035
			Flat	Open	Α	675	915	1235	1520	1775
	In air	90°C		Closed	А	645	850	1075	1230	1350
	of 25°C		Trefoil	Open	А	605	815	1085	1325	1525
				Closed	А	600	805	1070	1300	1490
			Flat	Open	Α	560	730	935	1190	1380
		65°C		Closed	А	510	625	720	790	825
	In .		Trefoil	Open	А	530	685	860	1085	1230
	ground			Closed	А	520	665	815	985	1080
	of 15°C		Flat	Open	А	660	860	1110	1410	1640
Copper		90°C		Closed	А	610	750	875	970	1015
			Trefoil	Open	А	630	810	1025	1295	1475
				Closed	А	620	790	975	1190	1310
			Flat	Open	Α	870	1165	1555	1995	2360
	In air	90°C		Closed	А	815	1035	1270	1450	1565
	or 25°C		Trefoil	Open	А	775	1035	1350	1745	2040
				Closed	Α	770	1020	1330	1655	1900

Aluminium conductor	kA	28.3	47.2	75.6	113.4	151.2
Copper conductor	kA	42.8	71.4	114.2	171.4	228.5

Sample Constructions

Rated voltages $U_o/U = 76/132 \text{ kV}$ $U_m = 145 \text{ kV}$ $U_p = 650 \text{ kV}$ Rated temperatures • Maximum permissible temp. of conductor in continuous use 90°C • Maximum permissible temp. of conductor in short-circuit 250°C

145 kV Cables 76/132 kV Single core, XLPE-insulated high voltage power cables

(for durations up to 5 sec.) Standard IEC 60840							
Nominal cross-sectional area of cond	luctor	mm²	500	800	1200	1600	2000
Constructional data							
Outer diameter	With aluminium conductor	mm	74	82	92	99	105
	With copper conductor	mm	74	83	94	102	109
Net weight	With aluminium conductor	kg/km	10100	13000	16500	19000	22000
with Pb sheath	With copper conductor	kg/km	13500	18500	24500	30000	35500
Recommended minimum bending radius during laying		m	1.3	1.5	1.7	1.8	1.9

Electrical properties at 132 kV and 50 Hz

	Maximum DC-resi	stance		at 20°C	Ω/km	0.0605	0.0367	0.0247	0.0186	0.0149
	Effoctivo	Flat	Conductor	20°C	Ω/km	0.089	0.070	0.064	0.061	0.062
A	rosistanco	formation	temperature	65°C	Ω/km	0.097	0.073	0.064	0.060	0.060
Aluminium	scroops			90°C	Ω/km	0.101	0.074	0.064	0.060	0.059
conductor	bonded at	Trefoil	Conductor	20°C	Ω/km	0.070	0.048	0.039	0.034	0.032
	both onds	formation	temperature	65°C	Ω/km	0.080	0.053	0.042	0.036	0.034
	both enus			90°C	Ω/km	0.085	0.056	0.043	0.037	0.034
	Maximum DC-resi	stance		at 20°C	Ω/km	0.0366	0.0221	0.0151	0.0113	0.0090
Effect	Effective-	Flat	Conductor	20°C	Ω/km	0.065	0.057	0.052	0.052	0.054
	rosistanco	formation	temperature	65°C	Ω/km	0.068	0.057	0.051	0.050	0.051
conductor	scroops			90°C	Ω/km	0.070	0.057	0.050	0.048	0.049
	bonded at	Trefoil	Conductor	20°C	Ω/km	0.046	0.035	0.025	0.023	0.022
	both onds	formation	temperature	65°C	Ω/km	0.052	0.037	0.027	0.024	0.022
	Dothenus			90°C	Ω/km	0.055	0.039	0.028	0.024	0.022
DC-resistance o	of metallic screen at	20°C approx.			Ω/km	0.51	0.42	0.34	0.30	0.26
		Flat formation			mH/km	0.58	0.55	0.53	0.52	0.51
Inductance		Trefoil formation			mH/km	0.39	0.36	0.35	0.33	0.32
Operating capac	citance				μF/km	0.20	0.25	0.30	0.30	0.35
Charging curren	t				A/km	4.6	5.5	6.7	7.5	8.2

Continuous current-carrying capacities

Conductor	Cables laid	Conductor temperature	Laying formation	Screen circuit						
			Flat	Open	А	570	745	905	1030	1135
		65°C		Closed	А	515	620	685	725	745
	in		Trefoil	Open	А	540	695	830	925	1000
	ground			Closed	А	530	670	780	855	905
	OFISC		Flat	Open	А	675	885	1075	1230	1355
Aluminium		90°C		Closed	А	615	750	840	895	920
			Trefoil	Open	А	640	825	990	1110	1200
				Closed	А	630	800	935	1035	1100
	la sin		Flat	Open	А	915	1235	1520	1770	1980
	in air	90°C		Closed	А	845	1075	1230	1345	1415
	of 25°C		Trefoil	Open	А	815	1085	1325	1520	1680
				Closed	А	805	1070	1300	1490	1635
			Flat	Open	А	725	935	1190	1375	1530
		65°C		Closed	А	620	720	790	820	825
	In		Trefoil	Open	А	685	860	1085	1230	1330
	ground			Closed	А	660	810	985	1075	1130
	of 15°C		Flat	Open	А	860	1110	1410	1635	1825
Copper		90°C		Closed	Α	750	875	970	1015	1030
			Trefoil	Open	А	810	1025	1290	1470	1600
				Closed	А	790	975	1185	1310	1380
			Flat	Open	А	1165	1555	1990	2360	2655
	In air	90°C		Closed	А	1035	1265	1450	1565	1620
	of 25°C		Trefoil	Open	А	1030	1350	1745	2035	2260
				Closed	А	1020	1325	1650	1895	2075

Aluminium conductor	kA	47.2	75.6	113.4	151.2	189.1
Copper conductor	kA	71.4	114.2	171.4	228.5	285.7

Sample Constructions

Rated voltages U_o/U = 89/154 kV U_m = 170 kV U_p = 750 kV Rated temperatures • Maximum permissible temp. of conductor in continuous use 90°C • Maximum permissible temp. of conductor in short-circuit 250°C (for durations up to 5 sec.) Standard IEC 60840

170 kV Cables 89/154 kV Single core, XLPE-insulated high voltage power cables

Nominal cross-sectional are	ea of conductor	mm ²	500	800	1200	1600	2000
Nominal cross-sectional are	ea of screen	mm ²	95	95	95	95	95
Constructional data	3						
Outer diameter	With aluminium conductor	mm	80	88	97	104	110
	With copper conductor	mm	80	89	100	107	114
Net weight	With aluminium conductor	kg/km	6150	7700	9600	11500	13000
with Cu screen	With copper conductor	kg/km	9300	13500	18000	22000	26500
Recommended minimum ben	iding radius during laving	m	1.6	1.8	2.0	2.1	23

Electrical properties at 154 kV and 50 Hz

	Maximum DC-resi	stance		at 20°C	Ω/km	0.0605	0.0367	0.0247	0.0186	0.0149
	Effoctivo	Flat	Conductor	20°C	Ω/km	0.118	0.095	0.084	0.079	0.079
	rosistanco	formation	temperature	65°C	Ω/km	0.126	0.098	0.085	0.079	0.079
Aluminium	resistance,			90°C	Ω/km	0.131	0.101	0.086	0.079	0.079
conductor	bonded at	Trefoil	Conductor	20°C	Ω/km	0.081	0.058	0.048	0.043	0.043
	both ands	formation	temperature	65°C	Ω/km	0.090	0.062	0.049	0.043	0.043
	Dothenus			90°C	Ω/km	0.095	0.065	0.051	0.044	0.044
	Maximum DC-resi	stance		at 20°C	Ω/km	0.0366	0.0221	0.0151	0.0113	0.0090
	Effoctivo	Flat	Conductor	20°C	Ω/km	0.094	0.081	0.072	0.068	0.066
Connor resistance	rosistanco	formation	temperature	65°C	Ω/km	0.097	0.082	0.072	0.068	0.065
conductor	resistance,			90°C	Ω/km	0.099	0.083	0.072	0.067	0.065
conductor	bonded at	Trefoil	Conductor	20°C	Ω/km	0.057	0.045	0.035	0.031	0.029
	both ands	formation	temperature	65°C	Ω/km	0.061	0.046	0.035	0.031	0.029
	Doth enus			90°C	Ω/km	0.064	0.047	0.036	0.031	0.029
DC-resistance	of metallic screen	at 20°C approx.			Ω/km	0.20	0.20	0.20	0.20	0.20
		Flat formation			mH/km	0.60	0.57	0.55	0.53	0.52
Inductance		Trefoil formation			mH/km	0.41	0.38	0.36	0.35	0.33
Operating cap	acitance				μF/km	0.17	0.20	0.24	0.27	0.29
Charging curre	ent				A/km	4.7	5.6	6.8	7.5	8.2

Continuous current-carrying capacities

Conductor	Cables laid	Conductor temperature	Laying formation	Screen circuit						
			Flat	Open	Α	575	750	905	1035	1135
		65°C		Closed	Δ	465	550	610	650	675
	In .		Trefoil	Open	Δ	540	690	815	910	985
	ground			Closed	A	510	630	730	795	845
	OF 15 C		Flat	Open	A	680	885	1075	1235	1360
Aluminium		90°C		Closed	A	560	665	745	795	830
			Trefoil	Open	A	640	820	975	1095	1185
				Closed	A	605	760	880	970	1035
	In air		Flat	Open	A	915	1235	1515	1765	1980
		90°C		Closed	A	790	980	1125	1235	1325
	0125 C		Trefoil	Open	A	820	1085	1320	1515	1675
				Closed	A	790	1025	1225	1385	1510
			Flat	Open	A	725	935	1190	1375	1530
	In	65°C		Closed	А	535	610	680	715	740
	around		Trefoil	Open	А	670	845	1055	1185	1290
				Closed	Α	620	745	885	960	1020
	ULIDE		Flat	Open	А	855	1115	1410	1635	1825
Copper		90°C		Closed	А	650	750	830	880	915
			Trefoil	Open	А	800	1010	1265	1430	1555
				Closed	Α	740	900	1075	1175	1250
	In air		Flat	Open	А	1145	1550	1985	2340	2640
	of 25°C	90°C		Closed	А	925	1120	1295	1410	1495
	01250		Trefoil	Open	А	1020	1345	1725	2005	2225
				Closed	А	965	1240	1535	1735	1890

Aluminium conductor	kA	47.2	75.6	113.4	151.2	189.1
Copper conductor	kA	71.4	114.2	171.4	228.5	285.7

Sample Constructions

Rated voltages U_o/U = 127/220 kV U_m = 245 kV U_p = 1050 kV Rated temperatures • Maximum permissible temp. of conductor in continuous use 90°C • Maximum permissible temp. of conductor in short-circuit 250°C (for durations up to 5 sec.) Standard IEC 62067

245 kV Cables 127/220 kV Single core, XLPE-insulated high voltage power cables

Nominal cross-sectional ar	ea of conductor	mm ²	500	800	1200	1600	2000
Nominal cross-sectional ar	ea of screen	mm ²	95	95	95	95	95
Constructional dat	а						
Outer diameter	With aluminium conductor	mm	91	98	106	113	119
	With copper conductor	mm	91	100	108	115	122
Net weight	With aluminium conductor	kg/km	7500	9000	11000	13000	14500
with Cu screen	With copper conductor	kg/km	11000	15000	19000	23500	28000
Recommended minimum be	nding radius during laving	m	1.8	2.0	2.2	2.3	2.4

Electrical properties at 220 kV and 50 Hz

	Maximum DC-res	istance		at 20°C	Ω/km	0.0605	0.0367	0.0247	0.0186	0.0149
	Effoctivo	Flat	Conductor	20°C	Ω/km	0.120	0.097	0.085	0.080	0.077
A	rosistanco	formation	temperature	65°C	Ω/km	0.127	0.100	0.086	0.080	0.076
conductor	scroops			90°C	Ω/km	0.132	0.102	0.087	0.080	0.076
conductor	bondod at	Trefoil	Conductor	20°C	Ω/km	0.083	0.060	0.049	0.043	0.040
	both onds	formation	temperature	65°C	Ω/km	0.091	0.063	0.050	0.044	0.040
	both ends			90°C	Ω/km	0.096	0.066	0.052	0.045	0.041
	Maximum DC-res	istance		at 20°C	Ω/km	0.0366	0.0221	0.0151	0.0113	0.0090
Effectiv Connor resista	Effective-	Flat	Conductor	20°C	Ω/km	0.096	0.079	0.073	0.069	0.067
	resistance	formation	temperature	65°C	Ω/km	0.099	0.080	0.073	0.068	0.066
conductor	scroons			90°C	Ω/km	0.101	0.081	0.073	0.068	0.065
	bonded at	Trefoil	Conductor	20°C	Ω/km	0.059	0.042	0.035	0.032	0.030
	both ends	formation	temperature	65°C	Ω/km	0.062	0.043	0.036	0.031	0.029
	both ends			90°C	Ω/km	0.065	0.045	0.036	0.031	0.029
DC-resistance	e of metallic screen	at 20°C approx.			Ω/km	0.20	0.20	0.20	0.20	0.20
		Flat formation			mH/km	0.62	0.58	0.56	0.54	0.53
Inductance		Trefoil formation			mH/km	0.44	0.40	0.38	0.36	0.35
Operating cap	pacitance				μF/km	0.14	0.18	0.21	0.23	0.25
Charging curr	ent				A/km	5.8	7.3	8.3	9.2	10.0

Continuous current-carrying capacities

Conductor	Cables laid	Conductor temperature	Laying formation	Screen circuit						
			Flat	Open	А	565	730	890	1015	1115
		65°C		Closed	А	460	540	600	640	665
	In .		Trefoil	Open	А	525	670	800	895	965
	ground			Closed	А	500	615	715	780	830
	OF 15 C		Flat	Open	Α	665	865	1060	1215	1340
Aluminium		90°C		Closed	Α	555	655	735	785	820
			Trefoil	Open	Α	625	800	960	1080	1170
				Closed	Α	595	740	865	950	1015
	la sin		Flat	Open	Α	875	1160	1450	1690	1890
		90°C		Closed	Α	760	935	1085	1190	1270
	07 25 C		Trefoil	Open	Α	795	1040	1285	1475	1625
				Closed	Α	770	985	1195	1350	1470
			Flat	Open	Α	715	955	1170	1350	1500
	In	65°C		Closed	Α	535	620	670	705	730
	III		Trefoil	Open	Α	660	865	1030	1160	1255
	of 15°C			Closed	Α	610	760	865	945	1000
	01150		Flat	Open	Α	850	1135	1390	1610	1795
Copper		90°C		Closed	Α	645	755	825	870	905
			Trefoil	Open	Α	790	1035	1235	1400	1525
				Closed	Α	730	920	1055	1160	1230
	In air		Flat	Open	Α	1115	1520	1895	2235	2510
		90°C		Closed	Α	905	1105	1250	1355	1430
	01236		Trefoil	Open	A	1005	1355	1670	1940	2150
				Closed	A	955	1250	1495	1690	1835

Aluminium conductor	kA	47.2	75.6	113.4	151.2	189.1
Copper conductor	kA	71.4	114.2	171.4	228.5	285.7

Sample Constructions

Rated voltages U_o/U = 200/345 kV U_m = 362 kV U_p = 1175 kV Rated temperatures • Maximum permissible temp. of conductor in continuous use 90°C • Maximum permissible temp. of conductor in short-circuit 250°C (for durations up to 5 sec.) Standard IEC 62067

362 kV Cables 200/345 kV Single core, XLPE-insulated high voltage power cables

Standard IEC 62067							
Nominal cross-sectional a	rea of conductor	mm ²	630	800	1200	1600	2000
Nominal cross-sectional a	mm ²	95	95	95	95	95	
Constructional dat	ta						
Outer diameter	With aluminium conductor	mm	111	112	115	122	128
	With copper conductor	mm	111	112	117	124	131
Net weight	With aluminium conductor	kg/km	11000	11500	12500	14500	16000
with Cu screen	With copper conductor	kg/km	15000	16500	20500	25000	29500
Recommended minimum be	ending radius during laving	m	2.2	2.2	23	2.5	2.6

Electrical properties at 345 kV and 50 Hz

	Maximum DC-resi	stance		at 20°C	Ω/km	0.0469	0.0367	0.0247	0.0186	0.0149
	Effoctivo	Flat	Conductor	20°C	Ω/km	0.110	0.100	0.089	0.083	0.080
	resistance	formation	temperature	65°C	Ω/km	0.114	0.102	0.089	0.082	0.079
Aluminium	scroops			90°C	Ω/km	0.118	0.105	0.090	0.083	0.079
conductor	bonded at	Trefoil	Conductor	20°C	Ω/km	0.072	0.062	0.051	0.046	0.042
	both onds	formation	temperature	65°C	Ω/km	0.077	0.065	0.052	0.045	0.042
	both enus			90°C	Ω/km	0.081	0.068	0.053	0.046	0.042
	Maximum DC-resi	stance		at 20°C	Ω/km	0.0283	0.0221	0.0151	0.0113	0.0090
	Effoctivo	Flat	Conductor	20°C	Ω/km	0.091	0.083	0.076	0.072	0.070
Copper resistance,	resistance	formation	temperature	65°C	Ω/km	0.092	0.083	0.075	0.070	0.068
	scroons			90°C	Ω/km	0.093	0.084	0.075	0.070	0.068
	bonded at	Trefoil	Conductor	20°C	Ω/km	0.053	0.044	0.037	0.034	0.032
	both onds	formation	temperature	65°C	Ω/km	0.055	0.045	0.037	0.032	0.030
	both enus			90°C	Ω/km	0.057	0.046	0.037	0.033	0.030
DC-resistance	of metallic screen	at 20°C approx.			Ω/km	0.20	0.20	0.20	0.20	0.21
		Flat formation			mH/km	0.64	0.61	0.58	0.56	0.55
Inductance		Trefoil formation			mH/km	0.45	0.42	0.39	0.38	0.36
Operating cap	acitance				μ F/km	0.13	0.16	0.18	0.20	0.22
Charging curre	ent				A/km	8.2	9.9	11.6	12.7	13.9

Continuous current-carrying capacities

Conductor	Cables laid	Conductor temperature	Laying formation	Screen circuit						
			Flat	Open	А	635	715	870	995	1090
		65°C		Closed	А	500	535	595	630	655
	in		Trefoil	Open	А	590	660	785	875	945
	ground			Closed	А	550	605	700	765	815
	of 15°C		Flat	Open	Α	760	855	1045	1195	1320
Aluminium		90°C		Closed	А	605	655	730	780	815
			Trefoil	Open	А	705	790	945	1065	1155
				Closed	Α	665	735	855	940	1005
	la sin		Flat	Open	Α	990	1125	1420	1650	1845
		90°C		Closed	Α	845	925	1080	1185	1265
of a	07 25 L		Trefoil	Open	Α	905	1020	1265	1455	1605
				Closed	Α	870	975	1180	1335	1460
			Flat	Open	Α	805	935	1140	1320	1460
	la.	65°C		Closed	А	570	610	665	695	720
	III		Trefoil	Open	А	735	845	1005	1130	1225
	ground of 15°C			Closed	Α	665	745	850	925	975
	01150		Flat	Open	А	960	1120	1370	1585	1765
Copper		90°C		Closed	А	695	750	820	865	895
			Trefoil	Open	А	880	1020	1215	1375	1495
				Closed	Α	805	905	1045	1145	1215
	In siz		Flat	Open	А	1250	1480	1855	2185	2455
		90°C		Closed	A	995	1100	1250	1360	1435
	01250		Trefoil	Open	A	1135	1335	1645	1910	2120
				Closed	А	1070	1235	1480	1675	1825

Aluminium conductor	kA	59.5	75.6	113.4	151.2	189.1
Copper conductor	kA	90.0	114.2	171.4	228.5	285.7

Sample Constructions

Rated voltages U_o/U = 220/400 kV U_m = 420 kV U_p = 1425 kV Rated temperatures • Maximum permissible temp. of conductor in continuous use 90°C • Maximum permissible temp. of conductor in short-circuit 250°C (for durations up to 5 sec.) Standard IEC 62067

420 kV Cables 220/400 kV Single core, XLPE-insulated high voltage power cables

(for durations up to 5 se Standard IEC 62067	ec.)					
Nominal cross-sectional a	rea of conductor	mm ²	800	1000	1200	1600
Nominal cross-sectional a	rea of screen	mm²	95	95	95	95
Constructional da	ata					
Outer diameter	With aluminium conductor	mm	123	124	124	127
	With copper conductor	mm	122	123	125	128
Net weight	With aluminium conductor	kg/km	13000	13500	14000	15500
with Cu screen	With copper conductor	kg/km	18500	20500	22000	26000
Recommended minimum h	ending radius during laving	m	2.4	2.5	2 5	2.6

Electrical properties at 400 kV and 50 Hz

	Maximum DC-res	istance		at 20°C	Ω/km	0.0367	0.0291	0.0247	0.0186
	Effective-	Flat	Conductor	20°C	Ω/km	0.101	0.094	0.090	0.085
A1	rosistanco	formation	temperature	65°C	Ω/km	0.103	0.095	0.090	0.083
conductor	scroops			90°C	Ω/km	0.106	0.096	0.091	0.084
conductor	bondod at	Trefoil	Conductor	20°C	Ω/km	0.063	0.056	0.052	0.047
	both onds	formation	temperature	65°C	Ω/km	0.066	0.057	0.052	0.046
	Doth enus			90°C	Ω/km	0.069	0.059	0.054	0.047
	Maximum DC-res	istance		at 20°C	Ω/km	0.0221	0.0176	0.0151	0.0113
_	Effective-	Flat	Conductor	20°C	Ω/km	0.084	0.079	0.077	0.074
		formation	temperature	65°C	Ω/km	0.084	0.078	0.076	0.071
Copper	scroops			90°C	Ω/km	0.084	0.079	0.076	0.071
conductor	bonded at	Trefoil	Conductor	20°C	Ω/km	0.045	0.040	0.038	0.035
		formation	temperature	65°C	Ω/km	0.046	0.040	0.038	0.033
	both enus			90°C	Ω/km	0.047	0.041	0.038	0.033
DC-resistance o	f metallic screen at	: 20°C approx.			Ω/km	0.20	0.20	0.20	0.21
		Flat formation			mH/km	0.62	0.60	0.59	0.57
Inductance		Trefoil formation			mH/km	0.44	0.42	0.41	0.38
Operating capacitance					μF/km	0.14	0.16	0.17	0.19
Charging current					A/km	10.3	11.5	12.3	14.0

Continuous current-carrying capacities

Conductor	Cables laid	Conductor temperature	Laying formation	Screen circuit					
		· · · · ·	Flat	Open	А	715	800	865	980
		65°C		Closed	А	540	570	595	625
	In		Trefoil	Open	А	660	725	775	865
	ground			Closed	А	605	660	700	760
	of 15°C		Flat	Open	А	855	960	1040	1185
Aluminium		90°C		Closed	А	655	700	730	775
			Trefoil	Open	А	790	875	940	1055
				Closed	А	735	805	855	935
			Flat	Open	А	1125	1265	1390	1630
	in air	90°C		Closed	А	935	1015	1080	1185
	of 25°C		Trefoil	Open	А	1025	1150	1250	1440
				Closed	А	980	1090	1175	1330
			Flat	Open	А	930	1045	1130	1300
	la.	65°C		Closed	A	615	645	660	690
	in 		Trefoil	Open	A	840	930	995	1115
	ground of 15°C			Closed	A	740	805	840	910
	OF 15 C		Flat	Open	Α	1110	1255	1360	1570
Copper		90°C		Closed	A	755	795	820	860
			Trefoil	Open	A	1010	1130	1210	1365
				Closed	Α	905	985	1035	1135
	la sin		Flat	Open	A	1450	1670	1825	2160
		90°C		Closed	A	1100	1195	1250	1355
	01 23 L		Trefoil	Open	A	1320	1500	1630	1895
				Closed	А	1230	1375	1470	1665

Aluminium conductor	kA	75.6	94.5	113.4	151.2
Copper conductor	kA	114.2	142.8	171.4	228.5

Using the tables

The electrical properties and continuous current ratings apply for lead sheathed cables with our normal sheath thickness. The thickness of sheath and especially the cross-section of copper screen can be adjusted according to the required short circuit rating of sheath or screen.

Where loading is cyclic, appreciable increase in current capacities may be justified. Refer to IEC Publication 60853 for calculation of the cyclic ratings.

In cable circuits having no magnetic saturating materials the positive and negative sequence impedances are equal and can be deduced from the tabulated effective resistance and inductance values corrected as required for frequencies other than 50 Hz.

Zero sequence impedance for solidly bonded systems can be roughly estimated as the sum of the resistances of conductor and sheath and a reactance of 0.05 to 0.1 ohms/km depending on the proportion of diameters of sheath and conductor at 50 to 60 Hz. For single point bonded systems the zero sequence impedance depends on the ground wires and any other grounded metallic objects along the cable route.

- SelectingDifferent kinds of power cable constructions area powerrequired to transport electrical energy fromcablethe power station to the consumer.The following foctors or importent when coloring
 - The following factors are important when selecting a suitable cable construction:
 - Maximum operating voltage
 - Insulation level
 - Frequency
 - Load to be carried
 - Daily load curve
 - Magnitude and duration of possible overloads currents phase-to-phase and phase-to-earth
 - Connection between overhead and cable line (whether directly or via a transformator)
 - Insulation level of equipment (bareconductor insulators, arresters, etc.)
 - Voltage drop
 - Length of line
 - Profile of line

- Mode of installation:

 underground (whether directly or in ducts)
 in air (if in a tunnel, the dimensions and mode of ventilation of the tunnel)
- Chemical and physical properties of the soil:
 whether rocky, sandy, clay or boggy; moist or dry
- chemical agents liable to cause corrosion etc. the maximum thermal resistivity of the soil
- Maximum and minimum ambient air and soil temperatures, bearing in mind nearby hotwater pipes and other factors liable to heat the cables
- Specifications and requirements to be met
- The cable should be economical to use; an optimum cross-sectional area can be calculated based on the capital costs of the cable and its running costs incurred by the power losses in the cable

Voltages Complete System Supply	<pre>Rated voltage The voltage which forms the basis for certain operating characteristics and test conditions is called the rated voltage and is denoted U_o/U where U_o = the voltage between the conductor and earth or earthed metallic cover (concentric conductor, screen, armouring, metal sheath) U = the voltage between the phase conductors Operating voltage U_m = the maximum continuously permissible operating voltage of the network at any time It is essential that the accessories and cables are type-tested together forming a complete system We supply a full range of accessories and fittings for the splicing and terminating as well as tools</pre>	or in any part of the network, excluding temporary fluctuations such as those occuring during switching or faults. Relationship between U _o /U and U _m in three phase systems are as follows according to IEC specifications: $\frac{U_o/U \text{ kV}}{U_m \text{ kV}} \frac{36/66}{72.5} \frac{64/110}{123} \frac{76/132}{127/220} \frac{190/345}{362} \frac{220/400}{420}$ and according to USA Standard C-84: 1-1995 $\frac{U_o'U \text{ kV}}{U_m \text{ kV}} \frac{40/69}{72.5} \frac{66/115}{121} \frac{80/138}{132/230} \frac{132/230}{200/345} \frac{200/345}{10}$ e and equipment, complete with instructions for installation. We also provide planning and supervision of the complete system packages.
Standards	The cables described in this catalogue are our standard types, and their performance has been proven in operation.	Construction and tests are in accordance with IEC publications where applicable.
Custom designed cables	Power cables ranging from 72.5 kV to 420 kV can be manufactured also according to other standards (eg. AEIC, VDE, BS, SEN), regulations or specifications in-line with the customers' requirements.	000
Circular Mils	In American standards the cross section area is expressed in Circular Mils Ac.	$A = \frac{Ac}{1973.5} mm^2$
Weights and dimensions	Cross-Sections in mm ² converted into Circular Mils mm ² 185 300 500 800 1200 1600 2000 kcmil 365 590 990 1580 2370 3160 3950 Weights, dimensions and characteristic data are approximate. Deviations due to different constructions are reserved.	<image/>

Our standard embossed or surface printed outer sheath marking on round cables consists of:

- name of manufacturer
- type designation, cross-sectional area of conductor, rated voltage and year of manufacture

Minimum permissible bending radii during laying:

- during pulling of power cables, the bending radii should not be smaller than the values given on pages 8-14
- in the case of single bends, the above values may be reduced to a min. of 70% if the cables are carefully and evenly bent only once before a termination (around a prefabricated bow, if necessary).

Max. permissible pulling tension during laying:

- during laying of power cables particular attention must be paid to the permissible tensile forces
- permissible tensile forces when pulling by cable pulling grip: $F = A \times 15 N/mm^2$ (cable with Al-conductor) $F = A \times 20 N/mm^2$ (cable with Cu-conductor) maximum value in both cases is 8500 N

 continuous length marking every meter or every few feet.

Sheath marking

Resistances

Example:

AHXLMK 1x300 mm² 132 kV 2006 1234 m

 maximum recommended tensile forces when Laying pulling eye is attached to the conductor: information Al-conductors; \leq 800 mm², F = A x 70 N/mm² > 800 mm², F = A x 50 N/mm²

Cu-conductors; \leq 800 mm², F = A x 90 N/mm² > 800 mm², F = A x 70 N/mm²

A = cross-sectional area of conductor in mm² (without screen and conc. conductor)

Minimum permissible cable temperature during laying:

 XLPE insulated cables U > 30 kV; -5°C for HFFR and PVC-sheath, -15°C for PE-sheath. At lower temperature the cables must be adequately warmed up beforehand. This can be done by storing the cables in a heated room for several days or by means of special equipment.

Direct Current resistance

The maximum DC resistance values of conductors at 20°C are shown in cable standards.

The DC resistance at other conductor temperatures may be calculated using the equation:

$$R=R_{20}[1+\alpha_{20}(t-20^{\circ}C)]$$

R = **DC** resistance at temperature t, Ω/km

 R_{20} = DC resistance of cond. at 20°C, Ω/km

- t = temperature of conductor, °C
- α_{20} = temperature coefficient of the resistance at 20°C, 1/°C

for copper conductors	$\alpha_{20} = 0.00393$
for Al. cond. and sheath	$\alpha_{20}^2 = 0.00403$
for lead alloy sheath	$\alpha_{20}^2 = 0.00400$

On pages 8-14 are given:

- maximum DC resistance of conductors at 20°C (in accordance with IEC 60228)
- calculated DC resistance of metallic sheaths and metallic screens at 20°C

The values for the inductance of single core cables have been calculated based on the following presumptions:

open screen circuit

The values for the operating capacitance of the cables are average values based on measurements and calculations.

The values for the charging current are valid at a temperature of 20°C, at a frequency of 50 Hz and at a rated voltage of the cable.

The effective resistance (= alternating current resistance) is made up of the DC resistance and

Effective resistance

the extra resistance, which takes into account additional losses caused by the current displacement in the conductor (skin effect, proximity effect), dielectrical losses in insulation circulating currents in the metal sheath or screen and eddy currents as well as magnetic reversal in the armour.

On pages 8–14 are given effective resistance of conductors at 20°C and at maximum conductor temperature. They are based on the following presumptions:

- frequency 50 Hz
- closed screen circuit

distance between single core cables

 distance between single core cables - in case of flat formation = one cable diam. - in case of trefoil formation = cables touching

- in case of flat formation = one cable diam.

The values of capacitance, charging current

and earth fault current will not change when

rature increases from 20°C to the maximum

in case of trefoil formation = cables touching

each other.

each other.

Operating capacitance, using XLPE insulated cables when the tempecharging current and permissible continuous conductor temperature. earth fault current

Inductance

Continuous current- carrying capacity	A separate group of three sing be continuously loaded accord on pages 8 to 14 if the presur fulfilled. Correction factors for are given in tables 1-7. The current-carrying capacitie accordance with the IEC Public under the presumptions given Presumptions • One three-phase group of single	gle core cab ing to the t options belo other insta s are calcul cation 6028 below.	les can ables ow are llations ated in 7 and ables	to each o only = so In addition when cro Closed so group = o conducto to each o earthed at both o	other and creens bon on, screen oss-bonde creen circu circuit of r ors or met other at be at least at ends.	earthed at ded at a si circuit is c d at equal i uit in single netal sheat allic screen oth ends of cone end =	one po ngle po conside interva core (chs, con s conn the gr screer	oint pint. red open l. cable ncentric ected roup and ns bonded
	 Maximum permissible temper conductor in continuous user XLPE insulated cables Ambient air temperature Ground temperature Depth of laying of cables Distance between single corr - in case of flat formation = - in case of trefoil formation each other Thermal resistivity of soil 1. Cable in air = heat dissipation same as if cables in free air. Open screen circuit in single group = circuit of metal sheat conductors or metallic scree 	rature of in 90°C 25°C 15°C 1.0 m e cables: one cables to one cables to 0 K m/W on condition core cable aths, concer ns connecto	ner liam. puching s ntric ed	XLPE-insu XLPE-insul to a condu In undergre ground is of rated condu of the soil s of time incu of the dryi the conduc the highes Using sing instead of t increase in	lated cable ated cable ctor temp ound insta continuous actor temp surroundin rease from ng-out pro tor tempe t rated val le-point b ooth-end b current c	es buried c s can continerature of allations, if sly operate erature, the g the cable to its origina ocesses. As rature may ue. onding or co onding resu arrying cap	lirectly nuously 90°C. a cablid d at th therma may in l value s a con y great cross-b lits in c pacity.	y in ground y be loaded e in the is highest al resistivity the course as a result sequence, ly exceed bonding onsiderable
Short- circuit current capacity	When planning cable installation taken that the cables and fitti capable of withstanding the ex- and thermal short-circuit stress The dynamic stresses depend asymmetric short-circuit current stresses on the mean short-circuit Dynamic stresses Generally cables and their stars will withstand the dynamic stress is important to take into consider short-circuit current capacity a to the technique of installation	ons, care ha ngs chosen (pected dyn sses. on the max. nt and the t rcuit curren ndard acces esses under e power sta eration the c nd to pay at n.	s to be are amic hermal t. sories short- tions it lynamic tention	<pre>Thermal st On pages & short-circu of one sec following p • before sl conducto of condu • max. per short-cir may be c max. per circuit du 1/√t, wh in second</pre>	tresses to 14 and it current ond and the presumptice hort-circuite ors = max. ictor in conditional missible to cuit is 2500 issible shown issible	e given the s for short ne values a ons: it the temp permissible ntinuous us emperature 0°C for XLPI ort-circuit ion of 0. 2 by multiply ort-circuit one second e duration	max. p -circuit re base erature e temp se of cor E-insula current up to ing the current d by th of sho	permissible t duration ed on the e of erature nductor in ated cables ts for 5 seconds e value of t for short- e figure rt-circuit
Correction factors for the current- carrying capacity	The following tables of correct be applied to the current-carry installation conditions vary from above.	tion factors ying capacit n the presur	are to y when nptions	The rating estimated carrying ca given in th	for most o by multiply pacity val e appropri	conditions ying the co ue by the c iate tables	can be ntinuou orrecti 1-7.	quickly us current- ion factors
Table 1.	Spacing between		Numbers o	f groups of singl	le core cables	beside each otl	ner	
Correction factors for	groups of cables, mm	2	3	4	5	6	8	10
groups of	0 (toucning) 70	0.79	0.69	0.68	0.58 0.64	0.55	0.50	0.46
cables buried	250	0.87	0.79	0.75	0.72	0.69	0.66	0.64
in ground	The values apply to groups of three single without or with spacing between the cable	core cables (in t groups horizont	refoil or flat fo ally placed.	ormation)			-	
Table 2	Thormal registivity of soil Km/h	0.7	1.0	1 7	15	2.0	7 5	2 0
Correction	Correction factor	1 10	1.00	0.92	0.85	0.75	0.69	0.63
factors for		1.10	1.00	0.52	0.00	0.75	0.03	0.05
different	Examples of thermal resistivities of soil:			• semi-dry grav	el and sand (n	noisture conten	t 10%)	1.2 K m/W
thermal resistivities	 dry sand (moisture content 0%) dry gravel and clay 	3.0 K m/W 1.5 K m/W		 semi-dry and moist clay and 	moist gravel d sand (moistu	ire content 25%	6)	1.0 K m/W 0.7 K m/W

of soil

Table 3.	Depth of laying, m	0.50-0.70	0.71-0.90	0.91-1.10	1.11-1.30	1.31-1.50
Correction factors for different installation	Rating factor	1.05	1.02	1.00	0.97	0.95

depths in ground

Table 4.	Conductor temp	erature				Grour	nd temperat	ure, C°				
Correction	C°	-5	0	5	10	15	20	25	30	35	40	45
factors for	90	1.13	1.10	1.06	1.03	1.00	0.96	0.93	0.89	0.86	0.82	0.77
different ground	80	1.14	1.11	1.07	1.04	1.00	0.96	0.92	0.88	0.83	0.78	0.73
temperatures	70	1.17	1.13	1.09	1.04	1.00	0.95	0.90	0.85	0.80	0.73	0.67
	65	1.18	1.14	1.10	1.05	1.00	0.95	0.89	0.84	0.77	0.71	0.63

Table 5.	Spacing between Numbers of tubes beside each other									
Correction	the tubes, mm	1	2	3	4	5	6	8	10	
factors for	0 (touching)	0.80	0.75	0.65	0.60	0.60	0.55	0.55	0.50	
in unfilled	70		0.75	0.70	0.65	0.60	0.60	0.55	0.55	
plastic pipes	250		0.75	0.70	0.70	0.70	0.65	0.65	0.65	

For parallel ducts with a group of three single core cables in each and with the cables equally loaded the current-carrying capacity indicated on pages 8 to 14 for cables buried directly in ground shall be reduced by correction factors given above.

The reduction in current carrying capacity can be avoided if the pipes after cable pulling are filled with material thermally equal to the ambient ground.

If factors in table 5 are used, factors in table 1 are not applicable.

Table 6.	Conductor temperature				An	nbient air te	emperature,	C°			
Correction	C°	10	15	20	25	30	35	40	45	50	55
factors for	90	1.12	1.08	1.04	1.00	0.95	0.90	0.85	0.80	0.74	0.68
different ambient	80	1.14	1.09	1.05	1.00	0.95	0.89	0.84	0.77	0.69	0.61
air temperatures	70	1.18	1.12	1.06	1.00	0.93	0.86	0.79	0.71	0.62	0.52
	65	1.20	1.14	1.07	1.00	0.93	0.85	0.77	0.68	0.57	0.45

Table 7. Correction factors for	Type of laying			Cables laid in flat formation Spacing = One cable diameter (d). Distance from the wall not less than 20 mm.					Cables laid in trefoil formation Spacing = Two cable diameters (2d). Distance from the wall not less than 20 mm.			
of three single	Number of groups		1	2	3	20 mm	1	2	3	20 mm 🕨 2d 🔫		
core cables			Correction factor				Correction factor					
laid in the air	On floor		0.92	0.89	0.88		0.95	0.90	0.88			
This applies		Number of trays										
the cable	On metal trays	1	0.92	0.89	0.88		0.95	0.90	0.88			
temperature	(restricted air	2	0.87	0.84	0.83		0.90	0.85	0.83			
does not		3 6	0.84	0.82	0.81		0.88	0.83	0.81			
affect the		Number				<u> </u>						
temperature.	On metal ladders	of ladders										
temperature.		1	1.00	0.97	0.96		1.00	0.98	0.96			
		2	0.97	0.94	0.93		1.00	0.95	0.93	O O O O O O O O O O		
		3	0.96	0.93	0.92		1.00	0.94	0.92			
		6	0.94	0.91	0.90		1.00	0.93	0.90	<u>. 00 00 00</u>		
	Arrangements where reduction of current is not necessary		The cooling of cables in flat formation by increased spacing will get better while the losses in metallic screens and sheaths will increase reducing the current-carrying capacity. Each case must be calculated separately.									
	Systems placed on top of each other		1 Corr	2 ection f	3 actor		1 Corr	2 ection f	3 actor			
On structures or on v	on structures or on Wall		0.94	0.91	0.89	<u>ч</u> •	0.89	0.86	0.84			

PRYSMIAN CABLES AND SYSTEMS OY

P.O.Box 13 FI-02401 Kirkkonummi, Finland Phone +358 10 77551 Fax +358 9 682 1545 www.prysmian.fi